On the distance spectral radius of bipartite graphs

نویسندگان

  • Milan Nath
  • Somnath Paul
چکیده

Article history: Received 11 June 2011 Accepted 29 July 2011 Available online 27 August 2011 Submitted by R.A. Brualdi AMS classification: 05C50 15A18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamilton cycles

In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number, and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper we present the spectral analogues of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk n be the ...

متن کامل

The Spectral Excess Theorem for Distance-Biregular Graphs

The spectral excess theorem for distance-regular graphs states that a regular (connected) graph is distance-regular if and only if its spectral-excess equals its average excess. A bipartite graph Γ is distance-biregular when it is distance-regular around each vertex and the intersection array only depends on the stable set such a vertex belongs to. In this note we derive a new version of the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012